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Abstract

For monocular RGB-based 3D pose and shape esti-
mation, multiple solutions are often feasible due to fac-
tors like occlusions and truncations. This work presents
a multi-hypothesis probabilistic framework by optimizing
the Kullback–Leibler divergence (KLD) between the data
and model distribution. Our formulation reveals a connec-
tion between the pose entropy and diversity in the multi-
ple hypotheses that has been neglected by previous works.
For a comprehensive evaluation, besides the best hypoth-
esis (BH) metric, we factor in visibility for evaluating di-
versity. Additionally, our framework is label-friendly – it
can be learned from only partial 2D keypoints, such as vis-
ible keypoints. Experiments on both ambiguous and real-
world benchmarks demonstrate that our method outper-
forms other state-of-the-art multi-hypothesis methods. The
project page is at https://gloryyrolg.github.io/MHEntropy.

1. Introduction
Pose and shape estimation is a core component of aug-

mented and virtual reality applications. The majority of
monocular 3D pose and shape estimation approaches [28,
31, 7, 3, 15] are designed to predict only a single solu-
tion, yet 3D recovery from a monocular input is an inverse
problem. Multiple solutions are feasible, especially under
settings with occlusions, truncations, low image quality, or
other ambiguities. It is therefore meaningful and desirable
to make multi-hypothesis predictions. Multiple hypotheses
are also useful in downstream tasks such as 2D keypoint
fitting [21] and multi-view fusion [21, 25].

Previous multi-hypothesis works use various 2D [2, 21,
37], 3D [39, 25, 2, 21, 37, 35], and mesh [2] reconstruction
losses to facilitate kinematically feasible poses and shapes,
while encouraging diversity in the solution set. Yet the
learning and evaluation for multi-hypothesis works are un-
derdeveloped. Learning-wise, many existing works are not
label-friendly and often require one-to-many labeled data to
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Figure 1. Our method estimates diverse and feasible hypotheses
for occluded joints while preserving accuracy for visible joints.

achieve diversity [21, 2, 35, 25], i.e., similar ambiguous ob-
servations with multiple distinct ground-truth poses. Such
labels are challenging to obtain, especially under occlusion
or out-of-view scenarios for which multi-hypothesis predic-
tions are the most meaningful. While empirical efforts have
been made to avoid mode collapse while encouraging diver-
sity [26, 27], these methods often do not fully explore the
solution space. It is, therefore, non-trivial to achieve feasi-
ble and as diverse as possible solutions.

Evaluation-wise, multi-hypothesis works use the best
hypothesis (BH) as the metric of choice [25, 2, 21, 37, 26].
BH measures the closest distance between a hypothesis set
and the ground truth. It emphasizes the accuracy of the clos-
est hypothesis while ignoring the set holistically. Few works
explicitly and quantitatively evaluate the diversity of the
predicted hypotheses. When they do so, diversity is evalu-
ated independently from the input [26]. Yet joints under oc-
clusion or a lack of evidence feature more uncertainty, and
as such should correspond to more diversity, while joints
should be less diverse on unambiguous parts. Current multi-
hypothesis evaluation schemes do not make such distinc-
tions. Unwanted diversity on unambiguous joints also con-
tributes to the calculation of overall diversity.



This paper addresses these shortcomings and presents a
new multi-hypothesis framework for estimating 3D poses
and shapes. At the heart of our method is a simple yet
essential underlying criterion - hypotheses should be di-
verse, but meaningfully so, and correlate with an obser-
vation’s ambiguity (see Fig. 1 (b)). To that end, we take
a probabilistically principled approach and minimize the
Kullback-Leibler (KL) divergence between the model dis-
tribution and the underlying data distribution. Our objec-
tive results in three terms: a reconstruction accuracy, a pose
prior, and most interestingly, a model entropy term. This
additional entropy term echoes the principle of maximum
entropy [10], where the probability distribution is designed
to align with observations but otherwise be as unbiased as
possible. For pose estimation, this means that visible and
unambiguous keypoints should remain fixed across the hy-
potheses, while occluded and ambiguous keypoints should
be feasible yet diverse (see Fig. 1 (b) and (c)).

Unlike existing works [35, 25, 21], our formulation for
diversity does not require one-to-many training data. In-
stead, our model is trained by explicitly encouraging it to
explore the feasible solution space via entropy maximiza-
tion while remaining consistent with the evidence. For the
implementation of our framework, we learn a conditional
distribution of parameters with a normalizing flow model.
The parameters modelled come from parametric 3D models
like MANO [33] and SMPL [30].

To be label-friendly, we advocate using weak labels;
specifically, we recommend 2D keypoints from only visi-
ble joints. Using 2D keypoint labels is well established in
the literature [3, 22]. However, considering only visible 2D
keypoints is not well-studied, even though it is highly intu-
itive from an annotation point of view and a natural fit for
multiple hypotheses.

For a comprehensive evaluation beyond the best hypoth-
esis we introduce a Per-Joint Diversity (PJD) to measure the
diversity of visible and occluded keypoints. Based on PJD,
we further propose a Relative Diversity (RD) ratio to mea-
sure the reasonable diversity of the hypotheses. A low ra-
tio indicates that observed keypoints are deterministic while
occluded keypoints are diverse. In experiments, our method
finds highly accurate BH and achieves the best RD ratio
compared to other multi-hypothesis approaches. To sum-
marize our contributions,

• We formulate multi-hypothesis estimation as a mini-
mization of the KL divergence between the model dis-
tribution and the data distribution. This formulation is
probabilistically principled and naturally yields an en-
tropy term that encourages diversity in the solution set.

• From our KL formulation, we propose a framework
to estimate multiple hypotheses of 3D pose and shape
that favours feasible and diverse solutions by design.

• We emphasize visibility in multi-hypothesis frame-
works by exploring visible 2D keypoints, i.e. partial
weak labels for estimating 3D pose and shape and fac-
toring in visibility for evaluating diversity.

• Experiments on toy, ambiguous, and real-world data
demonstrate that our method achieves excellent diver-
sity and the best BH compared to other state-of-the-art
multi-hypothesis methods.

2. Related Work
2.1. 3D Human/Hand Pose & Shape Recovery

Existing works estimate 3D pose and shape either di-
rectly [3, 16, 20, 19], or indirectly [5, 28, 31] via a paramet-
ric model like SMPL and MANO. Parametric models serve
as priors to encourage feasible solutions [3, 16] and reduce
the reliance on labels [22, 41]. The parameters of paramet-
ric models are typically learned under the supervision of
3D meshes and poses [3, 16, 20, 19]. Without parametric
models, works like [42, 5, 28, 31, 22] focus on the repre-
sentations of 3D surfaces and the design of architectures.
They convert the surfaces into different 3D representations
like mesh vertices [31, 28], UV mapping [42, 5, 40], and
implicit representations [6], and then fit the surfaces based
on architectures like GCNs [22] and Transformers [28].

2.2. Multi-Hypothesis Methods

These methods predict diverse and feasible predictions
from ambiguous input evidence, often via deep generative
models. The work in [35] proposes a conditional VAE to
model the distribution of a 3D pose sample set that is con-
sistent with the 2D pose, which helps to tackle the inherent
ambiguity in 2D-to-3D lifting. MDN-based works [39, 25]
introduce mixture density models to estimate multiple hy-
potheses by minimizing the negative log-likelihood of a
multi-modal mixture of Gaussians.

More recent works [37, 2, 21] apply normalizing flow
(NF) models. The work in [2] directly employs NFs as a
prior on the distribution of plausible poses at test time. Dif-
ferently, other works, like [37, 21], propose using a con-
ditional NF. Specifically, [21] uses the conditional NF to
model the distribution of SMPL pose parameters condi-
tioned on the 2D image, while [37] adopts predicted 2D
keypoints as a condition for the NF and specifically consid-
ers 2D poses in the latent space to model the distribution
from 3D poses to 2D poses and its reverse.

Despite their use of probabilistic modeling, few exist-
ing works use explicit distributional optimization objec-
tives. Our proposed method is derived directly from KL
divergence, which also brings an entropy term and explic-
itly encourages the estimation of multiple hypotheses.



3. Preliminaries

3.1. Overview of Parametric Models
MANO [33] and SMPL [30] are commonly-used para-

metric 3D models for human hands and bodies with pose
parameters ✓ 2 RN✓ and shape parameters � 2 RN� . Usu-
ally, ✓ and � are expressed as axis-angle rotations and PCA
coefficients learned from pose data and registered shapes,
respectively, though ✓ can also be expressed as PCA co-
efficients for MANO. Together, ✓ and � fully determine
the surface mesh M(✓,�) 2 RNm⇥3 and joint coordinates
J (✓,�) 2 RNj⇥3 in the 3D space.

Given camera parameters c = {R, t, s}, where R 2
R3⇥3 is a global rotation matrix, t 2 R2 is the translation,
and s is a scaling factor, the 3D pose J (✓,�) can be pro-
jected into 2D joints j with an orthographic projection ⇧:

j = s ·⇧(R · J (✓,�)) + t. (1)

3.2. 2D Keypoint Supervision
One weakly-supervised variant of monocular 3D pose

and shape estimation is learned from only 2D keypoint
annotations. A common approach [3] is to estimate the
MANO or SMPL parameters (✓̂, �̂) for a given image and
project the resulting 3D pose back into 2D joints ĵ, as per
Eq. (1). The parameters can be learned with ground-truth
2D joints j by minimizing the following objective:

L = ||j� ĵ||1 + �✓R(✓̂) + �� ||�̂||22, (2)

featuring a 2D reconstruction loss, a prior term R(·) on ✓

to encourage feasible poses, an l2 regularization on �, and
weighting hyperparameters �✓ and �� . The pose prior R(·)
could be adversarial prior for rotation representations [16]
or an l2 regularization for PCA coefficients [33].

3.3. Normalizing Flow
Normalizing Flows [32] are generative models with

strong modeling capacity for complex, multi-modal distri-
butions. Let X denote a d-dimensional random variable un-
der distribution P (X). The normalizing flow model repre-
sents X as a series of invertible mappings {fl}Ll=1 : Rd 7!
Rd on d-dimensional random variable Z:

X = F(Z) = fL � ... � f2 � f1(Z). (3)

Typically, the base distribution P (Z) is simple, e.g., a nor-
mal distribution N (0, I). By some specially designed struc-
tures of flow blocks [8] and the change-of-variable rule [8],
we can get the log-probability density of X as:

logP (X) = logP (Z)�
LX

l=1

log

����det
@fl

@Zl�1

���� , (4)

where, Zl = fl(Zl�1), Z0 = Z and ZL = X. Normalizing
flows estimate the likelihood with the reverse flow F�1(X)
transforming X to Z. For sampling, it first samples z from
P (Z), and passes z through the flow F to get x. Normal-
izing flows are favoured as generative models because they
can tractably estimate the exact likelihood and be optimized
through Maximum Likelihood Estimation (MLE). Further-
more, they can also be optimized by sampling through the
Law of the Unconscious Statistician (LOTUS).

3.4. Principle of Maximum Entropy
The entropy of random variable X taking values in X ,

H(X), quantifies the uncertainty of X. It is defined as:

H(X) = �
Z

X
p(x) log p(x)dx. (5)

Methods such as heuristic objectives [26] and mutual infor-
mation [13, 23] have been proposed to estimate and opti-
mize entropy.

Under the principle of maximum entropy [10], the prob-
ability distribution that most accurately reflects the current
state of the system is the one with the highest entropy. In
the context of 3D pose and shape estimation, the distribu-
tion should be compatible with complete observations, i.e.
visible joints, but otherwise be as unbiased as possible for
incomplete or ambiguous observations to maximize the en-
tropy. This prevents unnecessary information from being
assumed inadvertently. Especially, entropy maximization
has garnered significant attention on efficient learning e.g.,
self-supervised learning [1, 29] and semi-supervised learn-
ing [24]. It is used to remove inadvertent assumptions and
encourage the model to explore the full set of prototypes.

4. Methodology
4.1. Framework

We target multi-hypothesis 3D pose and shape recovery
from RGB inputs based on visible 2D keypoints. Consider
training instances {I, j,v}, where I is the RGB image, j is
the corresponding visible 2D keypoints, and v is an indica-
tor variable for 2D keypoint visibility. In line with previous
works [22, 25, 26], we treat the shape parameter � and cam-
era parameters c deterministically and assume that they can
be estimated reasonably from I .

Our main interest then is to model the distribution of
the pose parameter ✓, conditioned on the input image I

with associated j, � and c, i.e., the conditional distribution
p(✓|I, j, c,�), which we refer to as the data distribution. To
model the data distribution, we learn a model � in the form
of a neural network. Similarly, the model � has the dis-
tribution p�(✓|I, j, c,�), which we term as the model dis-
tribution. The model � can be learned by minimizing the
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Figure 2. Framework overview. The framework is optimized by considering three components: reconstruction, prior, and entropy (see the
red double-headed arrows). The distribution of the feasible pose parameters is captured by an NF model conditioned on image features.
The reconstruction applies different distributions for the visible keypoints (blue dots) and occluded keypoints (red dots).

Kullback-Leibler (KL) divergence between the data and the
model distribution, i.e.,

KL(p�(✓|I, j, c,�)kp(✓|I, j, c,�)). (6)

Data Distribution. Inspired by the existing 2D-to-3D lift-
ing works [7, 25, 26] that a 3D pose could be accurately
estimated by its corresponding 2D pose, � and camera in-
formation, we assume that once {j, c,�} are given, ✓ and
I are conditionally independent. As such, I can be omit-
ted as a conditioning variable. With Bayes’ rule, the data
distribution can be split as:

p(✓|I, j, c,�) = p(✓|j, c,�) / p(j|c,�, ✓) · p(✓). (7)

The first decomposed term in Eq. (7), the likelihood
p(j|c,�, ✓), is a projection consistency term that reflects the
reconstruction accuracy. The second term, p(✓), serves as a
general pose prior in a probabilistic perspective [16, 21].

Model Distribution. Like previous works [22, 16, 21, 2],
we estimate ✓ from an image I , as the image contains suf-
ficient information to infer c, � and the keypoints j. The
model distribution can be simplified as:

p�(✓|I, j, c,�) = p�(✓|I). (8)

Based on Eqs. (7) and (8), the KL divergence between the
model and data distributions can be expressed as:

KL(p�(✓|I, j, c,�)kp(✓|I, j, c,�)) =

�
✓

E
p�(✓|I)

[log p(j|c,�, ✓)]
| {z }

reconstruction

+ E
p�(✓|I)

[log p(✓)]

| {z }
prior

+H(p�(✓|I))| {z }
entropy

◆
,

(9)

where H(p�(✓|I)) = �Ep�(✓|I)[log p�(✓|I)] is the entropy
of ✓ given input image I . See Suppl. B for the full deriva-
tion. Minimizing the KL divergence in Eq. (9) maximizes
the reconstruction accuracy and the conditional entropy of
the pose under pose prior p(✓); this can be used directly to
supervise the neural network �.

Based on the above derivation, we propose a weakly-
supervised multi-hypothesis framework as illustrated in
Fig. 2. We consider only visible 2D keypoints as super-
visory signals for the reconstruction. Like [21, 26], we as-
sume that visible keypoints follow a Laplace distribution
for sharpness. In line with the principle of maximum en-
tropy (Sec. 3.4), the occluded keypoints each follow a uni-
form distribution of feasible locations. The intuition behind
such an assumption is that, for occluded keypoints, we re-
lax the supervision using prior knowledge p(✓) to generate
feasible solutions for the image. This prevents an overcon-
fident model that tries to fit all labels regardless of visibility
and also compensates for the lack of one-to-many data-label
pairs. As ✓ is derived from a parametric model, the prior can
be applied simply as a uniform distribution [33] or adversar-
ially [16] based on its representation. We choose to model
the distribution p�(✓|I) using a conditional NF model, i.e.,
p�(✓|I) = F�1(✓|I), as it is more feasible to calculate the
entropy term H(p�(✓|I)) via Monte Carlo (MC) sampling.
Therefore, all three terms in Eq. (9) can be maximized by
MC sampling and SGD [18].

An important part of our formulation involves the ex-
plicit maximization of entropy. The link between entropy
and diverse hypotheses is highly intuitive, yet this has been
overlooked in previous work. Even without one-to-many
labels, the entropy term encourages the model � to gener-
ate hypotheses that are diverse; the reconstruction and prior
term ensure that the hypotheses respect the observed labels
while remaining feasible.



4.2. Implementation Details
In Eq. (9), we represent image I with image features ex-

tracted from a ResNet-50 [12] backbone. To estimate c and
�, we append a 512-hidden unit MLP to the backbone. For
the normalizing flow model, we use the Real NVP[8].

First, to obtain ✓ for an image, according to LOTUS,
we sample z0 from a Gaussian distribution and feed it to-
gether with image feature of I to the invertible flow network
F(z|I) (the solid line in the yellow block in Fig. 2).

Reconstruction. We use a constant scale b for the Laplace
and assume the joints do not exceed the large occlusion
range (Suppl. B.2); the reconstruction loss simplifies to:

Lrec =
KX

k=1

vkkjk � ĵkk1, (10)

where K is the number of joints and jk represents k-th joint;
the loss is effective only on visible joints based on visibility
indicator vk.

Prior. To encourage feasible poses, we introduce a prior
term R(·) on ✓. For MANO, ✓ is given as PCA coeffi-
cients. We empirically place a uniform distribution R(✓) =
U(�2, 2) on these coefficients, which covers most feasible
solutions while avoiding invalid poses [33], i.e.,

L✓ =
X

i

max(0, |✓i|� 2)2. (11)

For SMPL, ✓ represents axis-angle rotations and can be re-
stricted by an adversarial prior [16], i.e.,

L✓ = Adv(✓). (12)

Entropy. We use a negative log-likelihood loss:

LH = � log p�(✓|I), (13)

where ✓ is sampled from the normalizing flow. The re-
verse path of the NF, F�1(✓|I), maps ✓ back to z0 in the
latent space conditional on the image features to compute
Eq. (4) [8, 17] (dashed lines in the yellow block in Fig. 2).

The losses in Eqs. (10)-(13) each covers a term in Eq. (9).
With the � regularization in Eq. (2), all losses sum into the
final training objective:

L = �recLrec + �✓L✓ + �HLH + ��L� , (14)

where the �s are the trade-off hyperparameters and L� =
||�||22. See Suppl. B for the full derivations and more train-
ing details.

5. Experiments
5.1. Datasets, Metrics, & Baselines
Datasets. We synthesize a 2-joint toy setting in 2D to
highlight components of our model. For the human body,
we experiment on Human3.6M (H36M) [14] and its am-
biguous version AH36M [2] with randomly truncated im-
ages of H36M to hide keypoints. Following [2, 21], we train
with subjects S1 and S5-9 and test with S11, training with
H36M and AH36M jointly, while evaluating separately.

Inspired by AH36M, we construct Ambiguous RHD
(ARHD) from the synthetic hand pose dataset RHD [43]
by adding circular patches with a predefined radius to the
fingers’ DIP joints1. The visibility in the scene is affected
depending on the finger and circle radius (see Fig. 5(c)). We
also use HO3D [11], a real-world hand-object dataset that
features severe occlusions. To evaluate the multi-hypothesis
metrics, similar to previous work [38], we split a test sub-
set from the training dataset. We estimate the visibility of
a joint [9] by thresholding the difference between captured
surface depth and the true keypoint position. More details
of the datasets are provided in Suppl. D.

Evaluation Metrics. Mean End-Point Error (EPE) is the
average Euclidean distance between predicted and ground-
truth joints, from which we consider the Best Hypothesis
(BH) [25, 2] and our newly proposed All Hypothesis (AH).

BH is a standard multi-hypothesis metric that selects the
hypothesis with the lowest pose or mesh EPE. To evaluate
the accuracy of all hypotheses, we propose AH, which is the
mean EPE of all hypotheses on 2D visible joints to measure
consistency to the image evidence.

As we highlighted, multiple hypotheses should be di-
verse, but the diversity should only be on uncertain joints
e.g. under occlusion. However, existing BH and diversity
metrics [34, 26] do not capture this target because unde-
sirable diversity on the visible joints may also contribute to
the diversity metrics. Therefore, we propose to complement
the evaluation of multi-hypothesis methods with Per-Joint
Diversity (PJD) and a Relative Diversity (RD) ratio.

PJD measures the standard deviation per joint and can
be used to show the diversity of both visible and occluded
joints in 2D and 3D spaces. To highlight the source of di-
versity, we propose a ratio:

RD =
PJD2d vis

PJD3d occ
, (15)

to account for the diversity of both the certain (i.e., 2D vis-
ible keypoints) and the uncertain parts (i.e., 3D occluded
keypoints). A lower RD means more diversity on the oc-
cluded keypoints relative to visible keypoints. We fol-
low [35, 37] and sample 200 hypotheses for evaluation.

1The distal interphalangeal (DIP) joint is the one closest to the fingertip.
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Figure 3. (a) Toy problem setting featuring four modes. (b) Our
probabilistic method in a weakly supervised setting recovers all
the modes. (c) The deterministic method, even under strong su-
pervision, predicts wrong modes as it easily overfits ubiquitous
observation noise.
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Figure 4. (a) Lowering the weight of the entropy term can im-
pair multi-mode learning while (b) increasing the weights hurts
the fitting accuracy, although it achieves diversity. (c) Choosing
different feasibility priors will also make the final learned modes
different. The second row shows the mode distribution in ↵ space.

Baselines & SOTAs. We compare our method with two
deterministic methods, Det (2D Vis) and Det (3D), which
use visible 2D and all 3D keypoint positions as supervision,
respectively. For more details, refer to a similar pipeline
in [3]. Moreover, we compare our method with the state-
of-the-art multi-hypothesis methods, including MDN [25],
conditional VAE [35], Multi-bodies [2], ProHMR [21],
CM-VAE [36] and WS3DPG [26].

Some of these approaches are designed with 3D pose su-
pervision; we replace their corresponding supervised losses
with the 2D version in Eq. (2). Unless specified, we also
use visibility labels as weights while remaining as faithful
as possible to the original method. See Suppl. F for method
introductions and details.

5.2. Toy Experiments & Ablation Studies

Settings. We perform the toy experiment under a simple
setting (depth ambiguity), as shown in Fig. 3(a). Consider
a single chain with two keypoints plus a root keypoint.
The bones are fixed to length 1 and the root is at the ori-
gin. The data (y,↵) consists of the 1D projection yk of
the keypoint on the y-axis and the angle ↵k between the
chain and the y-axis. From ↵k, we can get 2D coordinates

jk = (sin↵k, cos↵k) relative to their parent. There are in
total four Gaussian modes for the complete data, i.e., each
joint can swing left and right. The model is trained to pre-
dict ↵ based on y. For weak supervision, only 1D projec-
tions y are given. For strong supervision, all 2D coordinates
j are provided. Our model uses an MLP and Real NVP as
the backbone and optimizes an objective similar to Eq. (14).
For the prior loss, we add an L2 norm constraint on ↵.

Deterministic vs. Multi-Hypothesis. The deterministic
model trained under both weak and strong supervision can
learn only one of the four modes. Moreover, under strong
supervision, it is sensitive to similar input data and predicts
wrong modes if the inputs are corrupted with small pertur-
bations (Fig. 3(c)). In contrast, existing multi-hypothesis
methods can recover all modes under strong supervision.

Ours vs. Existing Multi-Hypothesis Methods. Existing
methods require similar observations with multiple distinct
ground-truth poses. In the weakly supervised setting, we
compare with MDN and observe that it finds only one of
the modes (Suppl. G.1) while our proposed method can
successfully recover all the modes (Fig. 3(b)).

Reconstruction vs. Entropy. The entropy term encour-
ages the set of predictions to cover diverse solutions while
maintaining a low reconstruction error. As the weight of
the entropy term �H decreases, the objective emphasizes re-
construction at the cost of entropy, leading to missed modes
(Fig. 4(a)). The extreme is the degradation to a determin-
istic model. On the other hand, with the increase in �H ,
the model pays less attention to reconstructing observed ev-
idence, hence the modes become dispersed (Fig. 4(b)).

Angle Prior. The prior term determines the distribution
over the feasible solution space. When we lower the weight
of the prior loss, the model may fit the evidence better
but consider less feasible poses. On the other hand, prior
knowledge defines the solution space, and the entropy term
will encourage the predictions to cover all possible solu-
tions based on the prior. For example, when we add a prior
sin↵k � 0 for the top keypoints, some previous modes be-
come infeasible and the model will only find two of the four
original poses (Fig. 4(c)).

5.3. Synthetic Ambiguous RHD
Deterministic vs. Multi-Hypothesis. Table 1(a) shows
that on ARHD, all the multi-hypothesis methods [25, 35,
26, 21, 37] outperform the deterministic ‘Det (2D Vis)’ on
the BH metric. Some methods even outperform the ‘Det
(3D)’ baseline with 3D supervision.



ARHD HO3D
BH (mm)# AH (pix)# PJD RD# BH (mm)# AH (pix)# PJD RD#Joint 2D Vis 3D Occ Joint Vert 2D Vis 3D Occ

Det (3D) [44] 20.98 - - - - 23.88 25.18 - - - -
Det (2D Vis) 25.11 14.39 - - - 24.10 25.40 16.85 - - -
Multi-bodies [2] 20.52 15.76 3.50 5.98 0.59 22.07 23.56 19.57 1.92 3.09 0.62
MDN [25] 21.33 18.47 7.14 12.69 0.56 21.28 22.67 18.81 3.48 6.25 0.56
CVAE [35] 20.99 19.95 7.02 10.66 0.66 21.04 22.62 18.90 4.07 6.64 0.61
ProHMR [21] 24.44 13.37 0.13 0.22 0.59 24.05 25.41 17.19 0.16 0.25 0.64
CM-VAE [36] 21.99 16.59 5.67 10.40 0.55 22.20 23.54 18.39 4.94 8.64 0.57
WS3DPG [26] 24.34 17.79 4.61 7.39 0.62 23.67 24.99 18.34 3.06 4.73 0.65
Ours 20.35 13.42 3.86 14.42 0.27 20.55 21.83 16.95 3.30 11.93 0.28

Table 1. Quantitative results on ARHD and HO3D V3. The best is marked in bold; the second best is underlined. Our method achieves
competitive SOTA results; occluded keypoints are diverse while visible ones are relatively accurate, i.e., have a lower RD.

Ours

MDN

Ours

MDN

Original

Original

ARHD

ARHD

(a) RD: 2D Vis PJD - 3D Occ PJD (b) PJD Curve Along Training (c) Qualitative Results

Figure 5. Illustration on ARHD. (a) Deviation from the diagonal (dashed line) towards the lower-right indicates a better trade-off between
the 2D visible accuracy and 3D occluded diversity. (b) Comparison of PJD during learning for occluded (solid line) and visible (dashed line)
keypoints. Our approach has a descending trend for visible keypoints and an ascending trend for the occluded ones. (c) Multi-hypothesis
meshes. The red boxes highlight the concerned occluded keypoints. Our method predicts diverse and feasible poses under occlusion while
MDN’s predictions are inconsistent with image evidence on visible keypoints.

Comparisons with SOTA. Methods like MDN [25] and
CVAE [35] all have low BH (Tab. 1(a)). However, their
diversity (PJD) for visible and occluded keypoints is high,
i.e., the entire hand is diverse. Together with a large AH,
this suggests that their hypotheses as a whole do not fit the
image evidence well. ProHMR [21] degenerates to an al-
most deterministic method, and has the lowest PJD for visi-
ble and occluded keypoints. We speculate that it is because
of its reliance on the strong supervision for ✓ labels. More
comparisons can be found in Sec. 5.5.

In contrast, our framework obtains lower BH and AH
and higher occluded diversity (higher PJDocc and thus sig-
nificantly lower RD). Fig. 5(a) shows that we strike a good
balance between reconstruction and diversity; qualitatively,
Fig. 5(c) shows that our recovered meshes are diverse and
consistent with the observation.

Connection to Existing Works & Ablation Studies.
ProHMR [21], CM-VAE [36], and WS3DPG [26] are
closely related to our method. Among them, ProHMR

is a variant without entropy optimization; CM-VAE [36]
applies a single Gaussian distribution instead of our NF;
WS3DPG [26] uses a GAN whose entropy is intractable.
Tab. 1(a) shows that our entropy term increases the PJD sig-
nificantly, especially for occluded joints in 3D (ProHMR’s
0.22 vs. our 14.42). Moreover, we outperform CM-
VAE and WS3DPG on all metrics on ARHD, showing the
powerful ability of NFs to model complex distributions
and estimate entropy. Additional ablations on visibility in
Suppl. G.2 shows that adding additional supervision on oc-
cluded joints hurts diversity.

PJD During Training. Fig. 5(b) shows the test PJD
scores throughout training. The PJD of MDN [25] for both
visible and occluded keypoints decreases as training pro-
gresses. Meanwhile, CVAE [35] has the opposite trend,
with increasing PJD scores for both types of keypoints. In
contrast, our approach has a descending trend on the PJD
of visible keypoints and an ascending trend on the occluded
ones (Tab. 1(a)).



GT Prediction

Figure 6. Visualization of our multiple hypotheses on HO3D.

GT

Front

Back
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Figure 7. Visualization of hypotheses with the smallest and largest
HOI Chamfer distance in two views. Differences are highlighted
with red boxes. Hypothesis selection leads to more feasible grasps.

ProHMR

Ours

Figure 8. Qualitative results on AH36M. The legs of our hypothe-
ses are much more diverse, while all trunks are consistent with the
image. The green mesh is the ground-truth.

5.4. Real-World Data: HO3D

When faced with real-world ambiguous settings, such
as objects occluding hands, our method is state-of-the-art
compared to other multi-hypothesis methods. The results
in Tab. 1(b) and Fig. 6 are consistent with the trends on the
synthetic ARHD – our method has the lowest BH and RD.

Hypothesis Selection. With additional input information,
the multiple hypotheses can be filtered for an improved set
of solutions. We show an example of hypothesis selection
in which we select feasible grasps based on the object in-
teraction. We simply use a post-processing strategy to
select samples. Specifically, we use a hand-object interac-
tion (HOI) feasibility metric, e.g., the widely used Chamfer
distance [4]. Based on the value of the Chamfer distance,
we can select hypotheses. We found it useful for picking

more plausible poses from hypotheses using task-related
constraints. We visualize hypotheses with the lowest and
highest HOI Chamfer distance in Fig. 7. Our hypotheses are
all consistent with the image cues in the front camera view.
From a different view, by incorporating the HOI constraint
for hypotheses, we can select more feasible grasp poses.

Meaningful Diversity. The purpose of our method is to
encourage meaningful diversity; hence we treat visible and
occluded joints differently. The quality of diversity can be
further improved by incorporating more information about
the observed ambiguity. One example is to add mask infor-
mation about the occlusions; it can be incorporated into our
framework as a post-hoc hypothesis selection during infer-
ence or as a reconstruction loss in Eq. (9) during training. In
both ways, the error rate for out-of-occlusion can therefore
be reduced without much loss in diversity (Suppl. G.2).

5.5. State-of-The-Art on H36M & AH36M

Supervision MH H36M AH36M

2D Vis
HMR 67.4 85.2
ProHMR X 64.3 82.6
Ours X 51.3 66.4

3D

HMR 56.8 -
SPIN 41.1 -
MDN X 42.7 69.5
CVAE X 46.2 75.1
Multi-bodies X 42.2 64.2
ProHMR X 36.8 60.1
Ours X 36.8 50.6

Table 2. PA-MPJPE (mm) of BH results on H36M and its ambigu-
ous version AH36M under the supervision of visible 2D keypoints
(2D Vis) and 3D keypoints (3D) with n = 25.

Supervision AH (pix)# PJD RD#2D Vis 3D Occ

2D Vis ProHMR 10.92 0.06 0.26 0.23
Ours 9.75 4.56 64.05 0.07

3D ProHMR 13.38 3.98 24.27 0.16
Ours 10.73 4.23 47.95 0.09

Table 3. Diversity metrics on AH36M under the supervision of
visible 2D keypoints (2D Vis) and 3D keypoints (3D).

Our framework is also effective for human pose estima-
tion. We follow [2, 21] and evaluate the accuracy and diver-
sity of hypotheses on the benchmark H36M and its ambigu-
ous version AH36M. Besides using 2D visible keypoints as
supervision, we also test a variant using 3D keypoints. For
supervision with 3D keypoints, we follow ProHMR [21]
and supervise the predicted 3D poses from SMPL directly.

Tab. 2 shows that we achieve the best BH on both
datasets with different supervision settings. Our method
has an impressive 9.5mm improvement on AH36M with 3D



keypoints as labels; furthermore, our performance with 2D
visible keypoints as weak labels is comparable to using 3D
keypoints as labels. Comparing diversity metrics in Tab. 3
and Fig. 8, we outperform ProHMR with respect to AH and
RD. Our method with the entropy term predicts highly di-
verse results in the weakly-supervised setting.

H36M AH36M
Multi-View Fitting Fitting

ProHMR 34.5 34.8 61.4
Ours 34.2 34.4 53.5

Table 4. PA-MPJPE (mm) of downstream tasks multi-view refine-
ment and fitting humans with 2D ground-truth. For these tasks, a
trained model distribution outputs only one hypothesis by observ-
ing more evidence.

Downstream Tasks. Our method, by estimating an accu-
rate yet diverse set of hypotheses, excels at providing inputs
for downstream tasks. We verify the hypotheses through
multi-view refinement and fitting humans with 2D ground-
truth on H36M and AH36M. We follow ProHMR to find the
solution that best matches the evidence among many possi-
ble hypotheses by optimization, i.e.,

max
✓

log p�(✓|I) + c(✓|e), (16)

where c(✓|e) is consistency with additional information,
e.g., multi-view and 2D projection consistency. Lower PA-
MPJPE in Tab. 4 verifies our effectiveness, which may im-
ply ours obtains a better representation with a more accurate
distribution than ProHMR.

6. Discussion & Conclusion
Our proposed multi-hypothesis framework is flexible, ef-

ficient, and label-friendly. We emphasize that diversity in
the hypotheses should not be arbitrary; instead, it should
come from ambiguity present in the image itself. To that
end, we also propose a more comprehensive evaluation
scheme based on visibility. In our work, we have only con-
sidered ambiguity from object occlusions and image trunca-
tions, but additional factors such as image quality and light
are interesting directions to investigate for future work.

We note that by virtue of evaluating on the provided an-
notations of the current datasets, the diversity concept re-
mains vague and limited to the dataset. For instance, in-
distribution testing aims to learn the pose diversity captured
in that dataset. It may not require learning more diverse
outdoor poses to achieve a good BH on indoor datasets and
thus not conducive to generalization to other scenarios. It is
suggested to focus more on the improvement and evaluation
of the diversity in the generalization scenario.
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Note that all notations and abbreviations here are consis-
tent with the main manuscript.

A. Problem Formulation Illustration
Here, we provide more insight into the formulation of the

ambiguity problem in this task (Fig. a). When occlusion
occurs, there are multiple joints, j(1) and j(2), that match
image I’s evidence (1st and 2nd columns); when estimat-
ing poses from monocular 2D images, multiple poses ✓(1,1)
and ✓

(1,2) have similar 2D joint projections j(1) (2nd and
3rd columns). The data itself (I, j(1)) may not have com-
plete labels (the missing annotation is indicated by dashed
lines), i.e., all 2D joints j(1) and j(2) corresponding to the
image I and their corresponding poses ✓. Our objective is to
use only these incomplete (I, j(1)) in the data to find all the
(I, {✓(1,1), ✓(1,2), ✓(2,1), ✓(2,2)}). To this end, we use prior
and weakly-supervised reconstruction conditions to define

*Equal contribution.

I j(1)

j(2)

θ(1,1)

θ(1,2)

θ(2,1)

θ(2,2)
Occlusion Depth ambiguity

Data distribution
P(θ|j, c, β)

Model distribution
Pɸ(θ | I)

KLD

Figure a. An illustration of our problem formulation. One image
I corresponds to multiple feasible 2D joints j, while one joint j
corresponds to multiple poses ✓. Shaded nodes represent observa-
tions, and white nodes represent those not observed from the data.

the data distribution rather than use the available data sam-
ples themselves purely. The visibility we propose naturally
considers ambiguities in occlusion, and 2D weak annota-
tions consider depth ambiguity. The figure also shows the
conditional independence of ✓ and I given j, c,� (red ar-
row) in Eq. (6), while ✓ can be predicted directly from I

(green arrow) reflected in Eq. (7).

B. Objective Derivation
B.1. KL Divergence

We here derive Eq. (8) in the main text. Given I, j, c, and
�,

KL(p�(✓|I, j, c,�)kp(✓|I, j, c,�))

=

Z

✓

p�(✓|I, j, c,�) log
p�(✓|I, j, c,�)
p(✓|I, j, c,�) d✓. (a)

By plugging the definitions of the data (Eq. (6)) and
model (Eq. (7)) distribution, we have Eq. (a) equal to,

Z

✓

p�(✓|I) log
p�(✓|I)

p(✓|j, c,�)d✓

=

Z

✓

p�(✓|I) log
p�(✓|I)

p(j|c,�,✓)p(✓)
p(j|c,�)

d✓, (b)



where p(j|c,�) =
R
✓
p(j|c,�, ✓)p(✓)d✓ by Bayes’ rule in

Eq. (6). Since p(j|c,�) is constant w.r.t. ✓ and our learn-
able parameters �, we can ignore it. Thus, Eq. (b) becomes
Eq. (8),

�
✓Z

✓

p�(✓|I) log p(j|c,�, ✓)d✓ +
Z

✓

p�(✓|I) log p(✓)d✓

�
Z

✓

p�(✓|I) log p�(✓|I)d✓
◆

=�
✓

E
p�(✓|I)

[log p(j|c,�, ✓)]
| {z }

reconstruction

+ E
p�(✓|I)

[log p(✓)]

| {z }
prior

+H(p�(✓|I))| {z }
entropy

◆
.

B.2. Specific Forms

Figure b. Laplace and uniform distributions are used for visible
and occluded joints respectively. The green is the valid region.

We assume that all keypoints are conditionally indepen-
dent, i.e., p(j|c,�, ✓) =

Q
k
p(jk|c,�, ✓), where k indexes

the keypoint, and jk 2 R2.
Reconstruction. For visible keypoints, we expect them
to be accurate estimates, so we define the reconstruction
p(j|c,�, ✓) in Eq. (8) as,

Laplace(jk |̂jk, bI) =
1

(2b)2
exp

 
�kjk � ĵkk1

b

!
, (c)

where b is the scale hyper-parameter, ĵk = proj(c,�, ✓) =
s⇧(RJ (✓,�)) + t in Eq. (1) of the main text.
Prior. We follow standard practices to use pose priors for
human hands and bodies. Specifically, � are PCA coeffi-
cients for both human hands and bodies and are predicted
deterministically. We follow Eq. (2) and use an l2 regular-
ization on �. For bodies, ✓ are axis-angle rotations, and the
adversarial prior [9] is used. For hands, ✓ are PCA coef-
ficients and can be restricted simply as a uniform distribu-
tion U(✓|[�2, 2]45) [21]. Specifically, we use a softening
uniform for optimization [19, 26], i.e., penalizing the out-
of-range part along each component, and get the following
loss.

L✓ = � logSoftU(✓|[�2, 2]45)
c
=

45X

i=1

max(0, |✓i|� 2)2,

(d)
where SoftU(x|[�a, a])

c
= exp(�max(0, |x|� a)2).

Finally, we obtain the final training objective Eq. (12).
Remarks. Eq. (8) is derived for visible keypoints regardless
of occluded ones. Here, we show that the occluded key-
points do not contribute to the final loss with the assump-
tion that the occluded region is large enough relative to the
hand/human. The assumption is reasonable as we focus on
the cases of large object occlusion (i.e., HO3D) and image
truncation (i.e., AH36M) in this paper.

We consider a data distribution integrating possible un-

derlying j̄ including both visible and occluded joints as fol-
lows,

p(✓|I, c,�) =
Z

j̄
p(✓|̄j, c,�)p(̄j|I)dj̄. (e)

Similar to the derivation of Eq. (8), the only difference is
the term p(j|c,�, ✓) of reconstruction term becomes,

Z

j̄

p(̄j|c,�, ✓)p(̄j|I)
p(̄j|c,�)

dj̄. (f)

For the term p(̄j|c,�, ✓), we simply assume it is a determin-
istic projection and we get p(̄j|c,�, ✓) = �(̄j|̂j). For p(̄j|I),
we assume occluded joints have tolerance to locations and
uniformly distribute around feasible locations inside the oc-
cluded region and we get p(̄j|I) c

= U (̄j|⌦(I))p(̄j|c,�).
Here, ⌦(I) denotes the occluded region. With the assump-
tion that all keypoints are conditionally independent, Eq. (f)
can be reformulated as,

Z

j̄k

�(̄jk |̂jk)U (̄jk|⌦(I))dj̄k = U (̄jk = ĵk|⌦(I)), (g)

where ĵk is the 2D projected keypoint. For the uniform dis-
tribution, we also use a softening version to penalize the
out-of-range part similar to Eq. (d), which gives,

SoftU(✏|[�a, a]2)
c
= exp

 
�

2X

d=1

max (0, |✏d|� a)2
!
,

(h)

where the occluded region ⌦ is approximated by a square
S(o, 2a) centered at o with a width of 2a (Fig. b), the devi-
ation from the joint to the center ✏ = ĵk �o ⇠ U([�a, a]2),
✏d indicates the d

th dimension of ✏. We can see that when
a is large enough relative to the hand scale, i.e., |✏d| < a,
this term becomes 0. For example, in ARHD, a is around
50 pixels and a projection is seldomly out of the occluded
region.

Omitting constant terms (i.e., additive and multiplicative
terms), we combine Eqs. (c) and (h) and have the recon-
struction term for both visible and occluded joints,

(
kjk � proj(c, ✓,�)k1, vk = 1,
P2

d=1 max(0, |✏d|� a)2 = 0, vk = 0.
(i)



Thus, the reconstruction loss Lrec is summed over joints as,

Lrec =
X

k

vkkjk � ĵkk1. (j)

C. Implementation Details
C.1. Architectures
Feature Extractors. For the toy problem, we use a 3-
layer MLP. For ARHD, we use an ImageNet [3] pre-trained
ResNet-18 with f 2 R512 [23]. For HO3D and (A)H36M,
we use a ResNet-50 with f 2 R2048 [7, 9]. We use the same
backbones for all methods.
Normalizing Flows. For hands, we use a lightweight and
concise implementation of the Real NVP [4]1. In particular,
it mainly includes affine coupling layers [4] and does not in-
clude random permutation [4] or multi-scale structures [4].
This is because their effects may not be so significant in
non-image generation tasks. Our NF network contains 12
coupling layers, and each coupling layer consists of 3 lin-
ear layers with 256 hidden units. For humans, we follow
ProHMR [14] to use Glow [11].

C.2. Training & Hyper-Parameters
Training. The Adam optimizer is used with default pa-
rameters [10]. The learning rate of each parameter group
is decayed from the initial 2e�4 by � = 0.1 twice. The
batch size is set to 64. We clip the gradient norm of it-
erable parameters for more stable training. We train all
the models to converge, typically for 260 epochs. Gen-
erative models like NFs usually take longer to converge
than discriminative models [11]. We apply standard ran-
dom scale, translation, rotation, and color jitter data aug-
mentation. For hands, we set hyper-parameters with �rec =
1

0.02 = 50,�✓ = 50
4 = 12.5, �H = �1. The loss is av-

eraged across batches. Effects of the hyper-parameters are
shown in Tab. c. For humans, we set hyper-parameters with
�rec =

1
0.01 = 100,�✓ = �� = 10, �H = �1.

As shown in the pipeline overview in Fig. 2, during train-
ing, we have the following steps:

1. Extract the image feature f from I;

2. Predict c and � based on f ;

3. Sample S z0 ⇠ N (0, I), transform it to ✓ through ✓ =
F(z0|f), and compute LH in Eq. (11) and (4);

4. Compute and optimize the final objective Eq. (12).

It is standard to optimize log-likelihood and entropy with
SGD by taking one [12] or more samples. We find that

1Based on https://github.com/senya-ashukha/real-nvp
-pytorch/blob/master/real-nvp-pytorch.ipynb

taking more samples helps entropy optimization and con-
vergence (Fig. c); we choose S = 10 samples to balance
performance with the computational expense.

During testing, for sampling, we similarly do the first
three steps of training.

Figure c. Entropy (1K samples) curves with different MC sam-
pling numbers S = 1, 10, 50 on ARHD.

Training Strategy on H36M. We follow [14, 2, 13]’s
mixed data training with MPII [1], MPI-INF-3DHP [20],
UP-3D [15], and MS-COCO [18].

D. Data Processing Details
Toy. We take 4 Gaussians centered at (↵1,↵2) =
(±⇡

4 ,±
⇡

6 ) with a standard deviation of 0.05 and draw 512
samples from them. We compute the y-projection from the
poses ↵, and add Gaussian noise with � = 0.01 to create a
toy dataset.
ARHD. We are motivated by [2] to consider constructing
occlusion. Instead, we simulate the hand occluded by an
object. For each image of ARHD, we fixedly select 1 of the
5 DIPs as the center and add a black circular patch with a
radius of 50 pixels. That is, we change the data before train-
ing, which will not change anymore during training. It can
be determined whether each keypoint is occluded knowing
the range of the added patch.
HO3D. HO3D V3 itself does not release ground truths for
the test dataset officially. We split the test set from the an-
notated training dataset to evaluate our metric, including

(a) Bleach cleanser (b) Cracker box (c) Box of sugar
Figure d. Some of our HO3D test samples and their visibility an-
notation.



BH. We select all frames of the ABF14, MC5, SB14, and
ShSu13 clips from the dataset as the test set (Fig. d). They
cover the actor’s hands and objects seen in the training set
as well as unseen poses and perspectives. For visibility, if
the difference between the depth calculated from the 3D co-
ordinates of the keypoint and the depth on its 2D projection
position is greater than a threshold (40 mm, the thickness of
the wrist), it is considered occluded [6]. We also perform
the manual verification of visibility annotations (Fig. d).
AH36M. The visibility of out-of-view keypoints is set to 0.

E. Evaluation Details
Visible & Occluded EPE of BH are also separately re-
ported in Tab. a supplementary to Tab. 1(a).
PJD & Gaussian Entropy. Standard deviation in PJD is
closely related to Gaussian entropy which is tractable as,

H(N (0,�2I)) =
1

2

X

d

(log �2
k,d

+ log 2⇡ + 1) (k)

= log⇧d�k,d + C, (l)

where k and d index keypoints and dimensions, respec-
tively. The root is not included because the standard de-
viation after the centralization is 0.
Sampling & Runtime. For the computation of BH and
PJD, we draw 200 samples, following previous work [22,
24]. Results are consistent across multiple runs of training
and evaluation. STD across BH evaluations is 0.013. The
impact of sample sizes/hypothesis numbers on BH is also
shown in Fig. e. BH improves and our advantage is more
pronounced with increasing sample sizes, up to 5.65mm
lower than Det (2D Vis). It takes 0.023s per image on
A5000, 0.014s for 10, 0.028s for 1000 samples. Besides,
faithful standard deviation (PJD) requires some amount of
samples.

BH (mm)#
Vis Occ

Det (3D) [27] 22.44 21.88
Det (2D Vis) 25.03 28.13
Multi-bodies [2] 21.97 21.53
MDN [16] 22.63 22.61
CVAE [22] 22.05 22.43
ProHMR [14] 24.25 27.36
CM-VAE [23] 23.22 23.29
WS3DPG [17] 24.23 27.55
Ours 21.91 20.40

Table a. EPE of the best hypothesis on separately visible and oc-
cluded joints on ARHD, except all.

F. SOTAs
We briefly introduce some recent state-of-the-art meth-

ods, comparing them to ours as well as their connection to
our method in the following.

Figure e. BH on ARHD for an increasing number of sample sizes.

(a) (b) (c)
Figure f. Probabilistic Graphical Models (PGMs) of state-of-the-
art methods, specifically, (a) MDNs [16], (b) CVAEs [22], (c)
ours, CM-VAEs [23], and WS3DPG [17]. Shaded nodes represent
observed variables, while white ones represent latent variables.

MDN [16] is designed based on Fig. f(a). It explicitly mod-
els k modes for each input. In our experiments, k is set
to 10. It is optimized by exactly calculating the likelihood
rather than sampling.
CVAE [22] is often used to do conditional generation tasks.
The network encodes conditional inputs I and multiple out-
puts j into the bottleneck latent space Z (Fig. f(b)). The
latent variable z represents the uncertainty when ambigu-
ity occurs, similar to k in MDNs. The optimization objec-
tive Evidence Lower Bound (ELBO) is also divided into a
reconstruction and KLD term like ours. Nonetheless, for
computation, an additional encoder needs to be introduced
during training but not used during test sampling. More-
over, they do not directly attach the entropy maximization
objective to the concerned ✓ as we do. Instead, they apply
KLD constraints on the Z space. Under our setting, we re-
port the BH results, for which oracle ground truths are used.
Multi-bodies [2] is similar to MDNs but based on a deter-
ministic framework to generate multiple hypotheses. Under
the weak supervision setting, we change the corresponding
best-of-M losses; for the best and other modes, we opti-
mize only visible keypoints. The single point k they obtain
with argmin is similar to the k and z found in MDNs and
CVAEs, respectively. However, they do not explicitly in-
centivize diversity to avoid the convergence of generated
modes. We use all hypotheses generated by 200 heads for
evaluation without requiring quantization.
ProHMR [14] also uses NFs to model ✓, instead of point



prediction as deterministic in HMR [9]. In a weakly-
supervised setting, the objective is almost equivalent to our
objective without the entropy term, i.e., only the reconstruc-
tion and prior term. Note that the mode loss in the original
paper optimizes the predictive ability instead of diversity.
CM-VAE [23] & WS3DPG [17] all just use different model
choices under our framework. From the PGM in Fig. f(c),
we can merge ✓ and z (in other PGMs), i.e., directly treat
the parameters ✓ as a latent variable. The Cross-Modal VAE
(CM-VAE) [23] uses a Single Gaussian Network (SGN) to
predict from one modal I to another j, and the WS3DPG
uses an implicit Latent Variable Model (LVM), Generative
Adversarial Nets (GANs) [5] when we use NFs. For GANs,
the computation of entropy is known to be intractable. A
mutual information lower bound [8] and some empirical
losses [25] can usually be used to approximately optimize
entropy.

Furthermore, as much as possible in our experiments, we
use architectures, hyper-parameters, and training strategies
similar to the original paper.

G. More Experimental Results
G.1. Toy

(a) (b)
Figure g. Modes learned by MDNs under (a) strong and (b) weak
supervision, respectively.

MDNs under Different Supervision. In Fig. g, we show
the modes learned by MDNs under strong and weak super-
vision, respectively, in Sec. 5.2. The MDN learns all the
modes given complete strong supervision (i.e., all 4 modes)
while only fitting one of them under incomplete strong (par-
tial modes) or weak supervision (i.e., 1D projection y). This
indicates that MDNs have the ability to fit modes explicitly
existing in the data but not in other cases.

G.2. ARHD
Visibility Setting Ablation. We also discuss the use of visi-
bility in Tab. b. We show the baseline ‘Det w/ all’ and ‘Ours
w/ all’ using all 2D keypoints as weak labels for training.
Compared to ‘Ours’ with only visible keypoints, ‘Ours w/
all’ requires more labor to obtain labels without the benefits
of BH. Moreover, the occluded labels harm the diversity of
occluded keypoints.

BH (mm)# AH (pix)# PJD RD#2D Vis 3D Occ
Det w/ all 24.33 16.48 - - -
Ours w/ all 21.83 16.10 3.55 6.09 0.58
Ours 20.35 13.42 3.86 14.42 0.27

Table b. Ablation study on the influence of keypoint visibility on
ARHD.

b �✓ BH (mm)# AH (pix)# PJD RD #2D Vis 3D Occ

0.02
5 21.59 14.58 3.72 15.87 0.23
50 21.76 14.91 3.27 12.44 0.26
500 20.66 13.96 3.54 11.76 0.30

0.01 50 22.21 14.60 2.51 9.57 0.26
0.05 21.54 16.16 4.73 15.73 0.30

Table c. Effects of loss weights. Models are trained for 260 epochs.

Trade-Off among Accuracy, Feasibility, & Diversity.
Tab. c demonstrates a similar trend compared to those in
toy experiments. Smaller b leads to better evidence recon-
struction (i.e., lower AH and 2D Vis PJD) sacrificed with
diversity (i.e., lower 3D Occ PJD) while smaller �✓ with
less feasibility constraint favors diversity as well.

BH (mm)# 3D Occ RD# Err#
Ours 20.35 14.42 0.27 0.09
Ours+PS 19.39 12.93 0.28 0.00
Ours+Lrec 20.38 12.72 0.30 0.06

Table d. Error rate of out-of-occlusion keypoints (Err) and 3D Occ
(PJD) of ours with Post-Selection (PS) and reconstruction loss
(Lrec), respectively. Note that the Error of MDN [16] is 0.10.

Meaningful Diversity. See Tab. d supplementary to the text
described in the remarks of Sec. 5.3. The consistency of
our framework with additional information improves with-
out much loss of diversity. Though they are experiments on
ARHD, they may be more readable in Sec. 5.3’s context.

Det (2D Vis) Multi-bodies [2] MDN [16] CVAE [22] Ours
25.11 25.60 27.37 27.10 25.05

Table e. LH (n = 1) in mm on ARHD. A lower score is better.

Most Likely Hypothesis (LH). As per [17], based on the
hypothesis with the highest probability (Tab. e), which is
quantized from 200 normally sampled samples using K-
Means [17, 2, 14]. Ours improves over baselines in a single
prediction.

Consistency" Diversity" Similarity
MDN [16] 3.44 3.00 2.80Ours 3.64 3.80

Table f. User perceptual study on ARHD. Each score ranges from
1 to 5.

User Perceptual Study. We surveyed 15 people to evalu-
ate 5 hypotheses from our method vs. 5 hypotheses from
MDN [16] for 20 images from ARHD. Our hypotheses are
rated more diverse and consistent with the images (Tab. f).



BH (mm)# 2D Vis
Det 22.63 -
MDN [16] 20.24 6.79
ProHMR [14] 22.23 0.13
Ours 19.27 3.45

Table g. Generalization from ARHD to RHD.

ARHD

Original

Figure h. Depth ambiguity of index fingers. Our two hypotheses
are the same from the front view but different from the side view.

Generalization to the original RHD. Table g shows that all
methods generalize, though we maintain a clear advantage.
Depth Ambiguity Visualizations. We visualize two hy-
potheses and show that our method can handle depth ambi-
guity (Fig. h).

G.3. HO3D

Single-View Multi-View
Det (2D Vis) Ours MDN [16] Ours

24.87 26.49 22.30 22.15
Table h. EPE in mm of hypothesis selection with multi-view im-
ages on HO3D. A lower score is better.

Multi-View Hypothesis Selection. Apart from hypothe-
sis selection based on grasp feasibility in the manuscript
Fig. 7, we also show hypothesis selection using the multi-
view images from the set of calibrated cameras. Tab. h
shows that ours disambiguates with the help of multi-view
images and improves the EPE from 26.49 mm to 22.15 mm.
Moreover, with multi-view hypothesis selection, ours out-
performs MDN.
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