

MHEntropy: <u>Entropy</u> Meets <u>M</u>ultiple <u>Hypotheses</u> for Pose & Shape Recovery

ICCV 2023

Glory Rongyu CHEN*

Sep, 2023

Linlin YANG*

Angela YAO

Computer Vision Machine Learning Group@NUS, SoC

- Why do we want <u>Multi-Hypothesis?</u>
- How does MH connect to Entropy?
- What are entropy effects & how to evaluate?

Common ambiguities

- \cdot Single-view RGB \rightarrow human SMPL/hand MANO params
- Ambiguities: depth, occlusion/truncation & low image quality...
- Our goal: consistent w/ evidence gold criterion: accurate poses on 2D visible while diverse & feasible on 3D occluded
- 1-v-m correspondence: deterministic \pmb{X} , probabilistic MH \checkmark

Lack of 1-v-m correspondence data

- Many methods [MDN, CVPR'19], [ProHMR, ICCV'21] trained w/ <u>Maximum Likelihood Estimation require data</u>, esp. 1-v-m DATA!
- 1-v-*m* paired data $(\mathbf{x}^{(i)}, \{\mathbf{y}^{(i,1)}, \mathbf{y}^{(i,2)}, \dots\}) \ll$ uncond generation; usually only have one $(\mathbf{x}^{(i)}, \mathbf{y}^{(i,1)})$ since $\mathbf{x}^{(i)} \neq \mathbf{x}^{(j)}$
- Models implicitly learn 1-v-*m* across the dataset mode collapse (not diverse) into 1-v-1 Det in a high dim [ProHMR, ICCV'21]
- $\cdot\,$ Even worse under weak sup w/o \mathbf{y} , cannot apply MLE

What can be used except data? Knowledge!

• How the humans do? Guessing occluded while lifting into 3D

Follow human's feasibility priors: checking 2D proj & prior [HMR, CVPR'18]

• Many off-the-shelf general priors $P(\Theta)$ 🗸

Diversity? Also knowledge about occluded

Many possible positions w/o more cues – Maximum Entropy

• Our intuitions: use knowledge to define the target data distribution to alleviate reliance on annotations

A probabilistic framework: MHEntropy

• Data distribution: $P_d(\Theta|I)$ defined by 2D proj $P(j|\Theta)$ (acc Laplace on vis + div Uniform on occ \iff vis weighting) & prior $P(\Theta)$ knowledge, introduced by Bayes' rules,

$$p(\boldsymbol{\theta}|\mathbf{j},\mathbf{l}) = p(\boldsymbol{\theta}|\mathbf{j}) \propto \delta(\mathbf{j}|\boldsymbol{\theta})p(\boldsymbol{\theta}),$$

$$p_{d}(\boldsymbol{\theta}|\mathbf{l}) = \int_{\mathbf{j}} p(\boldsymbol{\theta}|\mathbf{j})p(\mathbf{j}|\mathbf{l})d\mathbf{j} \propto p(\boldsymbol{\theta})p_{\text{proj}}(\mathbf{j} = \pi|\mathbf{l})$$

- Model distribution: $P_{\phi}(\boldsymbol{\Theta}|\mathbf{I})$ NFs
- Distributional optimization: $D_{KL}(P_{\phi}||P_d)$
- 3 terms: reconstruction, prior & missing entropy,

```
rec: \mathbb{E}_{p_{\phi}(\theta|I)}[\log p_{\text{proj}}(j = \pi|I)],

prior: \mathbb{E}_{p_{\phi}(\theta|I)}[\log p(\theta)],

ent: -\mathbb{E}_{p_{\phi}(\theta|I)}[\log p_{\phi}(\theta|I)]
```

• The essential entropy encourages meaningful diversity when it can, to further optimize the objective

- + Extract features ${\bf f}$
- + Sample heta from NFs conditional on ${f f}$
- Compute 3 losses & <u>BackPropagate</u>

From our proposed probabilistic framework,

- [ProHMR, ICCV'21] no entropy, biased distributions
- **[WS3DPG, BMVC'20]** GANs + heuristic regularizations, hard to optim
- [CMVAE, CVPR'18] less expressive unimodal distributions
- [Others] 'data-driven'

Toy ablation studies

3 terms

A comprehensive MH evaluation except BH

[CVAE, ICCV'19]

- The Best Hypothesis w.r.t. 1 possible annot, min MPJPE
- Gold criteria

[Acc] <u>All Hypothesis on vis</u> [Div] <u>Per Joint Diversity</u> (STD) on 2D/3D vis/occ parts [Div|Acc] <u>Relative Diversity</u>, the most certain / uncertain <u>PJD_{2d vis}</u>

(A-)H36M acc & div results

Supervision		MH	H36M	AH36M
	HMR		67.4	85.2
2D Vis	ProHMR	\checkmark	64.3	82.6
	Ours	\checkmark	51.3	66.4
3D	HMR		56.8	-
	SPIN		41.1	-
	MDN	\checkmark	42.7	69.5
	CVAE	\checkmark	46.2	75.1
	Multi-bodies	\checkmark	42.2	64.2
	ProHMR	\checkmark	36.8	60.1
	Ours	\checkmark	36.8	50.6

Table 2. PA-MPJPE (mm) of BH results on H36M and its ambiguous version AH36M under the supervision of visible 2D keypoints (2D Vis) and 3D keypoints (3D) with n = 25.

Supervision		AH (pix)	PJD		PDI
Supervision		AII (pix)+	2D Vis	3D Occ	KD↓
2D Vis	ProHMR	10.92	0.06	0.26	0.23
	Ours	9.75	4.56	64.05	0.07
3D	ProHMR	13.38	3.98	24.27	0.16
	Ours	10.73	4.23	47.95	0.09

Table 3. Diversity metrics on AH36M under the supervision of visible 2D keypoints (2D Vis) and 3D keypoints (3D).

Meet gold criteria more under both weak/strong sup

• Post-selection, e.g., <u>Hand-Object</u> Interaction grasp & multi-view

- Fitting evidence as a better prior
- Additional consistency reconstruction w/ more knowledge (*e.g.*, masks)
- Consider more ambiguities like image blur

- A probabilistic framework for a partial weak sup setting makes use of knowledge & derives a missing entropy
- The flexible framework can incorporate more consistency & ambiguities for meaningful diversity only on uncertain
- Comprehensive MH evaluation

- CVPR'23 & ICCV'23 reviewers
- Dr. Chen LI (NUS) working in MH
- Junpeng HU (SJTU) for math verification
- (CVML) Ziwei YU, Tianyu GAO, Dr. Guodong DING, & Ha Linh, etc.

References

[MDN, CVPR'19]	C. Li and G. H. Lee, "Generating multiple hypotheses for 3D human pose estimation with mixture density network," in <u>CVPR</u> , 2019.
[ProHMR, ICCV'21]	N. Kolotouros, G. Pavlakos, D. Jayaraman, and K. Daniilidis, "Probabilistic modeling for human mesh recovery," in <u>ICCV</u> , 2021.
[HMR, CVPR'18]	A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, "End-to-end recovery of human shape and pose," in <u>CVPR</u> , 2018.
[WS3DPG, BMVC'20]	C. Li and G. H. Lee, "Weakly supervised generative network for multiple 3D human pose hypotheses," in <u>BMVC</u> , 2020.
[CMVAE, CVPR'18]	A. Spurr, J. Song, S. Park, and O. Hilliges, "Cross-modal deep variational hand pose estimation," in <u>CVPR</u> , 2018.
[CVAE, ICCV'19]	S. Sharma, P. T. Varigonda, P. Bindal, A. Sharma, and A. Jain, "Monocular 3D human pose estimation by generation and ordinal ranking," in <u>ICCV</u> , 2019.

Thank You for Attention!