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Hints

• Why do we want Multi-Hypothesis?
• How does MH connect to Entropy?
• What are entropy effects & how to evaluate?
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Common ambiguities

• Single-view RGB→ human SMPL/hand MANO params
• Ambiguities: depth, occlusion/truncation & low image quality…
• Our goal: consistent w/ evidence – gold criterion: accurate
poses on 2D visible while diverse & feasible on 3D occluded

• 1-v-m correspondence: deterministic 7, probabilistic MH 3
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Lack of 1-v-m correspondence data

• Many methods [MDN, CVPR’19], [ProHMR, ICCV’21] trained w/
Maximum Likelihood Estimation require data, esp. 1-v-m DATA!

• 1-v-m paired data (x(i), {y(i,1), y(i,2), . . . }) ≪ uncond generation;
usually only have one (x(i), y(i,1)) since x(i) ̸= x(j)

• Models implicitly learn 1-v-m across the dataset – mode collapse
(not diverse) into 1-v-1 Det in a high dim [ProHMR, ICCV’21]

• Even worse under weak sup w/o y, cannot apply MLE

ProHMR

Ours
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What can be used except data? Knowledge!

• How the humans do? Guessing occluded while lifting into 3D

Follow human’s feasibility priors: checking 2D proj & prior [HMR, CVPR’18]

• Many off-the-shelf general priors P(Θ) 3
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Diversity? Also knowledge about occluded

• Many possible positions w/o more cues – Maximum Entropy

• Our intuitions: use knowledge to define the target data
distribution to alleviate reliance on annotations
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j(2)
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θ(2,1)

θ(2,2)
Occlusion Depth ambiguity

Data distribution
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Pɸ(θ | I)
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A probabilistic framework: MHEntropy

• Data distribution: Pd(Θ|I) defined by 2D proj P(j|Θ) (acc Laplace
on vis + div Uniform on occ ⇐⇒ vis weighting) & prior P(Θ)

knowledge, introduced by Bayes’ rules,

p(θ|j, �I) = p(θ|j) ∝ δ(j|θ)p(θ),

pd(θ|I) =
∫
j
p(θ|j)p(j|I)dj ∝ p(θ)pproj(j = π|I)

• Model distribution: Pϕ(Θ|I) NFs
• Distributional optimization: DKL(Pϕ∥Pd)
• 3 terms: reconstruction, prior & missing entropy,

rec: Epϕ(θ|I)[log pproj(j = π|I)],
prior: Epϕ(θ|I)[log p(θ)],
ent: − Epϕ(θ|I)[log pϕ(θ|I)]

• The essential entropy encourages meaningful diversity when it
can, to further optimize the objective
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Framework
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• Extract features f
• Sample θ from NFs conditional on f
• Compute 3 losses & BackPropagate
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Connections to existing works

From our proposed probabilistic framework,

• [ProHMR, ICCV’21] no entropy, biased distributions
• [WS3DPG, BMVC’20] GANs + heuristic regularizations, hard to
optim

• [CMVAE, CVPR’18] less expressive unimodal distributions
• [Others] ‘data-driven’

8



Toy ablation studies

3 terms
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A comprehensive MH evaluation except BH

[CVAE, ICCV’19]

• The Best Hypothesis w.r.t. 1 possible annot, minMPJPE
• Gold criteria
[Acc] All Hypothesis on vis
[Div] Per Joint Diversity (STD) on 2D/3D vis/occ parts
[Div|Acc] Relative Diversity, the most certain / uncertain PJD2d vis

PJD3d occ
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(A-)H36M acc & div results

Meet gold criteria more under both weak/strong sup 11



Where our MH can be used?

• Post-selection, e.g., Hand-Object Interaction grasp & multi-view
GT

Front

Back

Smallest dist Largest dist

• Fitting evidence as a better prior
• Additional consistency reconstruction w/ more knowledge (e.g.,
masks)

• Consider more ambiguities like image blur
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Takeaways

• A probabilistic framework for a partial weak sup setting makes
use of knowledge & derives a missing entropy

• The flexible framework can incorporate more consistency &
ambiguities for meaningful diversity only on uncertain

• Comprehensive MH evaluation
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Thank You for Attention!
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